LIRIS

Challenges of Security Risks in Service-Oriented Architectures

Youakim Badr¹, Frederique Biennier¹, Pascal Bou Nassar³, Soumya Banerjee²

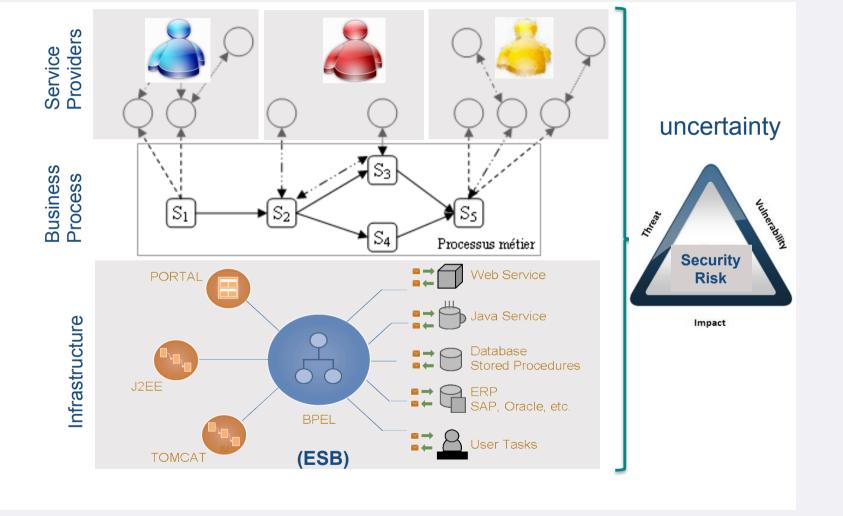
¹ LIRIS Lab, INSA-Lyon, France
 ² Agence Universitaire de la Francophonie (AUF)
 ³ Birla Institute of Technology, Mesra, India

Outline

E Motivation Example

EChallenges:

- Managing security in opened, dynamic, and distributed environments
- Handling unforeseen threats and deciding on security treatment strategies


Contributions:

- Security aware SOA design method
- Dependency Model and Security Service Reference Model
- **Design time**: Security Support-decision system
- Runtime: Security Monitor system

Conclusion and perspectives

Motivating Example: <u>SOA and information security in opened and dynamic environments</u>

E-Commer

 $\widehat{}$

CRM

3

o - Information security : Confidentiality, Integrity, Availability, Accountability, Assurance, Non-repudiation, ... h

Web Service Security

Web service <u>Security Standards</u>

- Application layer: SAML, ebXML, XACML, XML Firewall, ...
- Messaging layer : SOAP, WS-Security, XML-Signature, XML Encryption..
- Transport layer: TLS/SSL, HTTP. FTP, SMTP, TCP/IP, ...

XML specific attacks

 oversize payload, coercive parsing, XML injection, WSDL scanning indirect flooding, SOAPAction spoofing, BPEL state deviation, middleware hijacking, ...

E Security aware SOA infrastructures?

Challenges

Existing SOA design methods

- provide little attention to integrate security concerns in reference models, guiding each stage of the service lifecycle (i.e., design and runtime)
 - Reference Models: (OASIS) reference architecture, (Open Group) SOA Ontology, ...
 - SOA Design Methods: SOMA, SOAD, CBM, SOAF, SODM, ...

SOA security solutions

- often limited to services, composition mechanisms and technical implementation
- underestimate the (opened & dynamic) environment by which SOA-based applications collaborate and exchange information (=>end-to-end security)

5

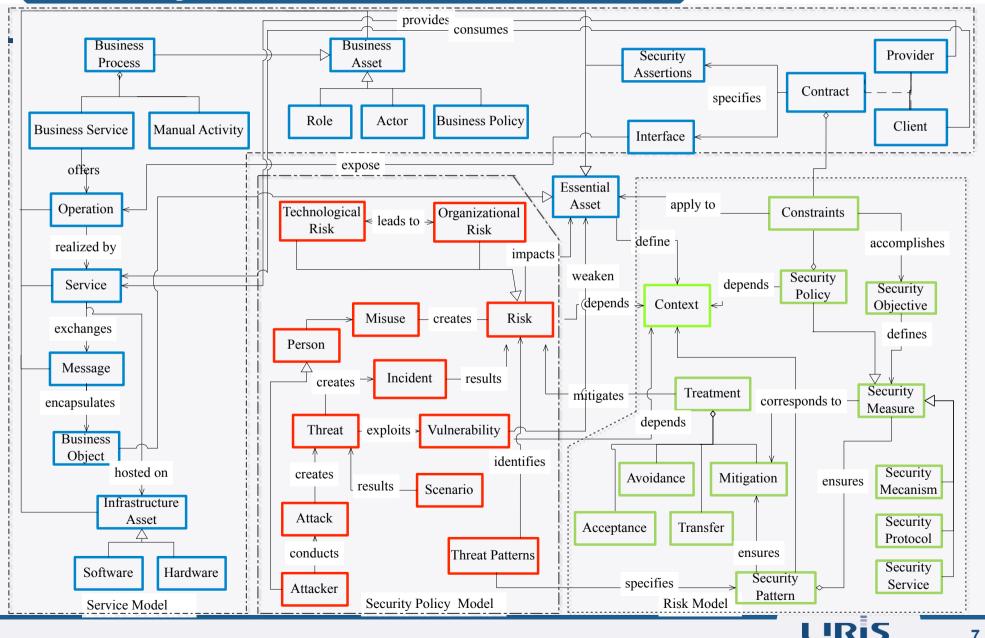
Need for security risk management

- Security Management : define global and coherent security policies
- Risk Management : OCTAVE, EBIOS, CORAS, SNA,...

Contribution: Security aware SOA Design

The Security Risk-driven SOA Design Method addresses information security in the SOA from a risk management perspective (...) at design time and runtime

Cycle de vie


- The Preparatory Stage
- The Design Stage
- The Execution Stage

Outcome:

 key models, tools and deliverables in each step to progressively identify business goals, essential assets, and services

Security Service Reference Model

7

Dependency Model

Essential Assets for the SOA design context

- Business Assets
 - business processes, documents, partners, actors, roles, ...

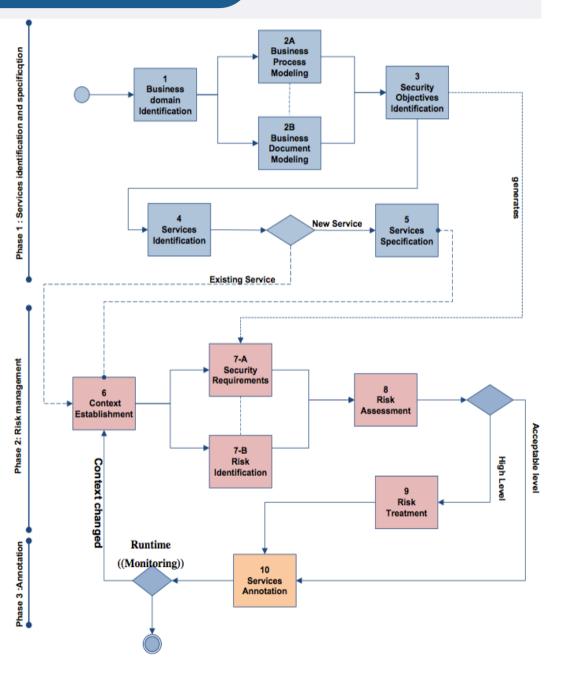
Service Assets

• atomic & composite services, operations, messages, ...

Infrastructure Assets

• hardware, software, network protocols, ...

Building the Dependency Graph Bayesian Networks learned from surveys



Actor

The SOA Design Method Lifecycle

- 2- The Risk Management Phase
- **3- The Annotation Phase**

The Service Identification and Specification Phase

- 1: Business Domain Identification
- 2A: Business Process Modeling
- **2B:** Business Document Modeling
- **3**: Security Objectives Identification
- **4**: Service Identification
- **5**: Service Specification

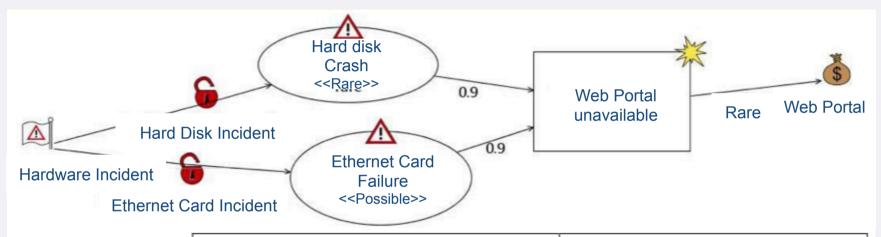
Steps	Tasks	Deliverables	
	Identify domain business assets:	- Business goals (OMG Business motivation Model)	
1	 what (missions), how (activities) 	- Business objects and activities	
	- who (actors), why (motivations)	- Actors-system interactions	
2A/2B	Establish use cases and business processes	- UML use cases	
		- BPMN Business process	
3	Identify business needs and security goals	- Business security goals (EBIOS, OCTAVE)	
		(Confidentiality, Integrity, Availability,),	
	Apply an <i>outside-in</i> approach to identify	Top-down approach: manual activities, automated	
4	services based on business objects and	activities (atomic services, composite services,)	
	processes and use cases	Bottom-up approach: legacy and technical services,	
	Specify service profiles:	-Service specifications	
5	-Business capabilities,		
	-Functional / non-functional properties		

The Risk Management Phase

- **6**: Context Establishment
- **7**A: Security Requirements
- 7B: Risk Identification
- **8**: Risk Assessment
- **9**: Risk Treatment

Tasks	Deliverables
Identify essential assets at business, service	-Essential Assets
and infrastructure	-Asset contexts: Dependency Graph
- Identify security requirements for each asset	- Vulnerability list (CERT/MITRE)
based on business security goals	- Threats list (EBIOS/ OCTAVE)
-Identify risks related to assets	- Security Policy Model
Evaluate risks	- Risk list
- Severity of impact	- Risk Model
- Rate of occurrences	
- Prioritize risks	- Security Policy Model
- Evaluate security costs	- Treatment strategies:
- Choose a risk treatment strategy	Avoidance, reduction, sharing, retention
Annotate asset security levels with weighted	- Secure Design ontology
values	- Security annotations (confidentiality, availability,)
	Identify essential assets at business, service and infrastructure - Identify security requirements for each asset based on business security goals - Identify risks related to assets Evaluate risks - Severity of impact - Rate of occurrences - Prioritize risks - Evaluate security costs - Choose a risk treatment strategy Annotate asset security levels with weighted

Example: Risk Levels


■.

		Severity of Impact			
		Insignificant [0 minute, 30 seconds]	Minor [30 seconds, 5 minutes]	Major [5 minutes, 2 hours]	Catastrophic [2 hours, ∞[
	Rare [2, 9] :10 hours	Low Risk	Low Risk	Low Risk	Medium Risk
Rate of Occurrences	Possible [10, 19] : 10 hours	Low Risk	Medium Risk	Medium Risk	Medium Risk
	Probable [20, 49] :10 hours	Low Risk	Medium Risk	High Risk	High Risk
	Certain [50, ∞[: 10 hours	Medium Risk	Medium Risk	High Risk	High Risk

Example: Availability Threat Scenario

Web Portal Availability

	Threat Scenario (1): Web Container Crash	Threat Scenario (2): Router Crash	
Incident	Hard Disk Crash	Ethernet Card Failure	
Rate of Occurence	Rare : [0, 1] : 5 years	Possible : [2, 5] : 5 years	
Scenario Probability	0.9	0.9	
Combine Value	$[0, 1]: 5 \ge 0.9 = [0, 0.9]:5$	$[2, 5]: 5 \ge 0.9 = [1.8, 4.5]:5$	
Global Occurrence Probability	[0, 0.9]:5 + [1.8, 4.5]:5 = [1.8, 5.4]:5 [1.8, 5.4]:5 = Rare		

LIRIS

13

Execution Stage

A Continuous Security Improvement Process

1) From risk management phase to service specification phase

14

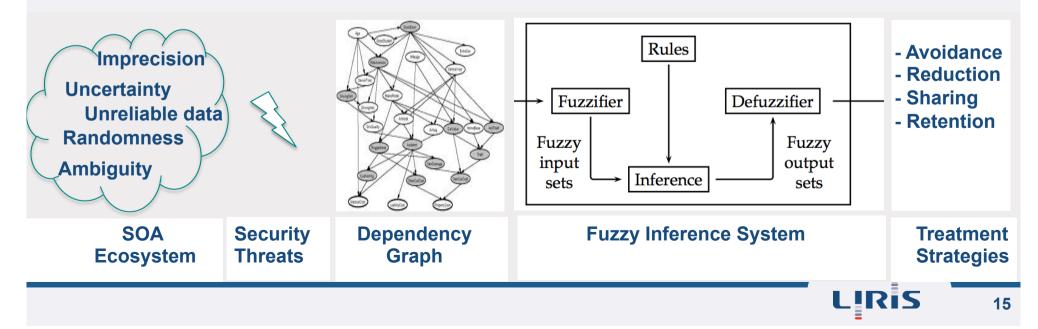
- Risk high => choose a risk treatment strategy

2) From *runtime* to *risk management phase*- Context changes => establish the context

Security Decision-Making System

Service Monitoring System

A Decision-making System for Security Risk Treatments


Problem: Deciding on the best risk treatment strategy to deal with <u>threats</u> often relies on *rules of thumb* and often incorporates security analyst's *intuition* and judgment.

Risk Treatment Decision Process:

[Threats] cause [Risks] handled by [Security Objectives] resulting in [Security Treatment]

Fuzzy Logic:

- Simulating analogy and approximation
- Handling imprecision measures conveyed by the natural language

The Decision-making System for Security Risk Treatments Fuzzy Variables and Memberships

1- Fuzzy Linguistic Variables

T(Essential Assets) = {Service, Operation, Message, Business Process} T(Vulnerability) = {Low, Medium, High} T(Incident) = {Random, Regular, Intentional} T(Threat) = {Malicious, Accidental, Failure, Natural} T(Security Objective) = {Confidentiality, Integrity, Availability, Accountability, Assurance} T(Security Measure)={Encryption, Authentication, SecureTransmission} T(Rate of Occurrence) = {Certain, Possible, Probable, Rare} T(Severity of Impact) = {Insignificant, Major Impact, Loss} T(Risk) = { Low, Medium, High} T(Risk Treatment) = {Reduction, Sharing, Avoidance, Retention}

2- Membership Functions

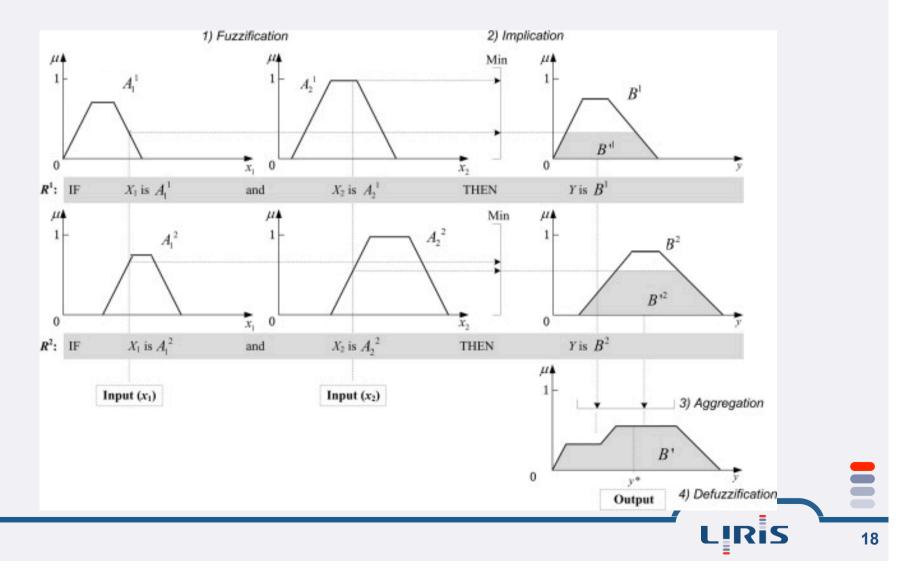
$$T(u) = \begin{cases} 0 & u \le a \\ (u-a)/(b-a) & a < u \le b \\ 1 & b < u \le c \\ (d-u)/(d-c) & c < u \le d \\ 0 & d < u \end{cases} \xrightarrow{Low} \xrightarrow{b} Medium_{c} High$$

The Decision-making System for Security Risk Treatments: *Fuzzy Production Rules*

3- Fuzzy rules

- R₁ IF [Essential Assets] AND [Vulnerability] AND [Incident] THEN [Threat]
- R₂ IF [Threat] AND [Rate of Occurrence] AND [Severity of Impact] THEN [Risk]
- R₃ IF [Risk] AND [Security Objective] THEN [Security Measure]
- R₄ IF [Security Measure] THEN [Risk Treatment]

Examples of rules in stage R_i, R₂, R3 and R₄:


- **R**₁₁ IF Essential Assets is Service AND Vulnerability is High AND Incident is Intentional THEN Threat is Malicious
- R₂₁ IF Threat is *Malicious* AND Rate of Occurrence is *Possible* AND Severity of Impact is *Loss* THEN Risk is *High*

17

- **R**₃₁ IF Risk is AND Security Objective is Confidentiality THEN Security Measure is Encryption
- **R**₄₁ IF Security Measure is *Encryption* THEN Risk Treatment is *Reduction*

The Decision-making System for Security Risk Treatments: *Evaluation and Inference*

4 - Fuzzy evaluation method to propagate multi-stage analysis

A Service Monitoring System for Vulnerability Detection

Problem: Revealing security profiles disclose service weaknesses to potential threats by providing critical information about essential assets

Security Annotations: obfuscate security information and enrich service descriptions with a global security level

Annotation value: For a service s that depends on n assets, $x_1, ..., x_n$

$$V_{C} = \frac{\sum_{i=1}^{n} x_{i} \times w_{i}}{|A_{s}|} \qquad \qquad x_{i} = \begin{cases} 0 & \text{if } x_{i} \text{ is vulnerable} \\ 1 & \text{if } x_{i} \text{ is invulnerable} \\ n \end{cases}$$

Examples: Confidentiality, Availability, Supervision, ...

Supervision \subseteq

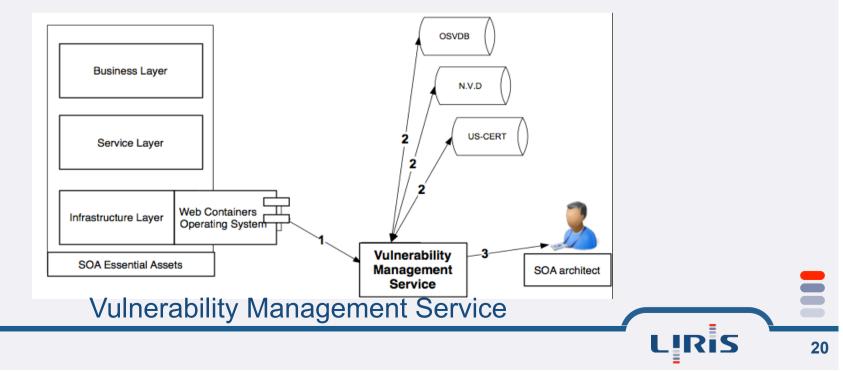
 $(\forall hasPertinentEssentialAsset.Message) \land$

 $(\forall hasPertinentEssentialAsset.BusinessObject) \land$

(∀ hasPertinentEssentialAsset.HostingServer)∧

(∀hasPertinentEssentialAsset.OperatingSystem)

19


A Service Monitoring System for Vulnerability Detection

E Public Vulnerability Databases

- National Vulnerability Database (NVD)
- Open Source Vulnerability DataBase (OSVDB)
- United States Computer Emergency Readiness Team (US-CERT)

The Common Platform Enumeration (CPE)

cpe:/{part}:{vendor}:{product}:{version}:{update}:{edition}:{language}

EQuestions ?

